Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(60): 125889-125906, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010541

RESUMO

Production of coffee beans generates various types of biomass that can be applied as bioenergy for drying and roasting the beans. Thus, the aims of this study were to explore the characteristics of coffee biomass pellets (CBPs) produced from coffee cherry pulp (CCP), coffee parchment (CPM), and expired green coffee beans (ECB) by single and co-pelletization. The CBPs were then used to produce the synthesis gas in a downdraft gasifier, and the syngas properties were investigated for further heat applications. The results showed that single and co-pelletization of CCP and CPM performed well. The CBPs had good physiochemical properties in shape, size, and atomic ratios. The higher heating value and energy density of CBPs were 19.25-24.29 MJ/kg and 12.09-14.87 GJ/m3. The ash from CBPs was rich in K2O, CaO and MgO oxides, and the CPM ash had the lowest initial deformation temperature at 1136 °C. The ash samples from CBPs also had different slagging and fouling indexes. The syngas from CBPs mainly contained H2 (6.85-9.30%), CO (12.15-18.85%), and CO2 (10.85-13.75%). The heating value and tar concentration of syngas from CBPs were 3.24-4.32 MJ/m3 and 21.75-30.92 g/m3. The main chemical compounds in tar were styrene, phenol, caffeine, and pyrrole according to GC-MS. These results indicate that CCP and CPM have potential for pelletization and gasification to generate heat needed for coffee bean processing.


Assuntos
Temperatura Alta , Óxidos , Biomassa
2.
Bioresour Technol ; 386: 129519, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37468010

RESUMO

The transition to renewable energy sources is crucial to ensure a sustainable future. Although the sugar and ethanol industries benefit from this transition, there are untapped opportunities to utilize the waste generated from the sugar and ethanol process chains through two-stage anaerobic digestion (TSAD). This review comprehensively discusses the utilization of various sugarcane-based industrial wastes by TSAD for sequential biohydrogen and methane production. Factors influencing TSAD process performance, including pH, temperature, hydraulic retention time, volatile fatty acids and alkalinity, nutrient imbalance, microbial population, and inhibitors, were discussed in detail. The potential of TSAD to reduce emissions of greenhouse gases is demonstrated. Recent findings, implications, and promising future research related to TSAD, including the integration of meta-omics approaches, gene manipulation and bioaugmentation, and application of artificial intelligence, are highlighted. The review can serve as important literature for the implementation, improvement, and advancements in TSAD research.


Assuntos
Resíduos Industriais , Saccharum , Etanol , Açúcares , Inteligência Artificial , Hidrogênio/análise , Biocombustíveis , Metano , Anaerobiose , Reatores Biológicos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37294491

RESUMO

Since the release of antibiotics as emerging contaminants into the environmental water can cause severe difficulties for human health, their removal from the water is necessary. In this regard, a novel environmentally friendly adsorbent was developed based on green sporopollenin, which was magnetized and modified with magnesium oxide nanoparticles to produce MSP@MgO nanocomposite. The newly developed adsorbent was applied to remove tetracycline antibiotic (TC) from aqueous media. The surface morphology of the MSP@MgO nanocomposite was characterized using FTIR, XRD, EDX, and SEM techniques. The effective parameters of the removal process were studied, and it was confirmed that the chemical structure of TC was highly affected by changes in pH solution due to different pKa; therefore, the results showed that pH 5 was the optimum. Also, the maximum sorption capacity of MSP@MgO for TC for adsorption was obtained at 109.89 mg.g-1. In addition, the adsorption models were investigated, and the process was fitted with the Langmuir model. Thermodynamic parameters showed that the process was spontaneous (ΔG < 0), endothermic (ΔH > 0) and the adsorption mechanism was following the physisorption mechanism at room temperature.

4.
Chemosphere ; 317: 137923, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682635

RESUMO

An anaerobic membrane bioreactor (AnMBR) was employed as primary treatment unit for anaerobic treatment of simulated wastewater to produce high effluent quality. A lab scale hollow fiber membrane was used to scrutinize the performance of AnMBR as a potential treatment system for simulated milk wastewater and analyze its energy recovery potential. The 15 L bioreactor was operated continuously at mesophilic conditions (35 °C) with a pH constant of 7.0. The membrane flux was in the range of 9.6-12.6 L/m2. h. The different organic loading rates (OLRs) of 1.61, 3.28, 5.01, and 8.38 g-COD/L/d, of simulated milk wastewater, were fed to the reactor and the biogas production rate was analyzed, respectively. The results revealed that the COD removal efficiencies of 99.54 ± 0.001% were achieved at the OLR of 5.01 gCOD/L/d. The highest methane yield was found to be at OLR of 1.61 gCOD/L/d at HRT of 30 d with the value of 0.33 ± 0.01 L-CH4/gCOD. Moreover, based on the analysis of energy balance in the AnMBR system, it was found that energy is positive at all the given HRTs. The net energy production (NEP) ranged from 2.594 to 3.268 kJ/gCOD, with a maximum NEP value of 3.268 kJ/gCOD at HRT 10 d HRT. Bioenergy recovery with the maximum energy ratio, of 4.237, was achieved with an HRT of 5 d. The study suggests a sizable energy saving with the anaerobic membrane process.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Animais , Anaerobiose , Leite , Reatores Biológicos , Metano , Membranas Artificiais
5.
Mar Pollut Bull ; 188: 114569, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708616

RESUMO

Mangroves provide various ecosystem services, carbon sequestration, biodiversity depository, and livelihoods. They are most abundant in marine and coastal ecosystems and are threatened by toxic contaminants like heavy metals released from various anthropogenic activities. However, they have significant potential to survive in salt-driven environments and accumulate various pollutants. The adverse effects of heavy metals have been extensively studied and recognized as toxic to mangrove species. This study sheds light on the dynamics of heavy metal levels, their absorption, accumulation and transport in the soil environment in a mangrove ecosystem. The article also focuses on the potential of mangrove species to remove heavy metals from marine and coastal environments. This review concludes that mangroves are potential candidates to clean up contaminated water, soil, and sediments through their phytoremediation ability. The accumulation of toxic heavy metals by mangroves is mainly through roots with limited upward translocation. Therefore, promoting the maintenance of biodiversity and stability in the coastal environment is recommended as an environmentally friendly and potentially cost-effective approach.


Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Metais Pesados/análise , Solo , Biodiversidade , Poluentes do Solo/análise
6.
J Environ Manage ; 326(Pt A): 116742, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375437

RESUMO

The use of biosorption as a strategy for lowering the amount of pollution caused by heavy metals is particularly encouraging. In this investigation, a low-cost and efficient biosorbent, Inula Viscosa leaves were used to remove zinc ions (Zn2+) from synthetic wastewater. A Fourier transform infrared spectroscopy experiment, a scanning electron microscopy experiment, and an energy dispersive X-ray spectroscopy experiment were used to describe the support. Several different physicochemical factors, such as the beginning pH value, contact duration, initial zinc concentration, biosorbent dose, and temperature, were investigated in this study. When the Langmuir, Freundlich, Temkin, Toth, and Redlich-Peterson models were used to match the data from the Inula Viscosa leaves biosorption isotherms, it was found that the biosorption isotherms correspond most closely with the Langmuir isotherm. On the other hand, the kinetic biosorption process was investigated using pseudo-first-order, pseudo-second-order (PS2), and Elovich models. The PS2 model was the one that provided the most accurate description of the biosorption kinetics. The thermodynamics process shows the spontaneous and endothermic character of Zn2+ sorption on Inula Viscosa leaves, which also entails the participation of physical interactions. In addition, the atom-in-molecule analysis, density functional theory, and the conductor like screening model for real solvents, were used to investigate the relationship that exists between quantum calculations and experimental outcomes.


Assuntos
Inula , Poluentes Químicos da Água , Zinco/química , Águas Residuárias/análise , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Bioresour Technol ; 360: 127617, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35840022

RESUMO

Residual oil in palm oil mill effluent (POME) poses difficulties in its treatment chain. Non-ionic surfactants containing different hydrophobic tail structures and their optimal concentrations were evaluated for effectiveness in biohydrogen production. By adding the surfactants at their critical micelle concentration in synthetic oily wastewater, the maximal H2 yield was increased by 2.2 and 3.5 times for Triton X-100 and Tergitol 15-S-9, respectively, compared to the control. Using real POME, the supplemental Tergitol 15-S-9 resulted in a 56.4 % improvement in H2 production. For continuous digestion studies, pure POME and Tergitol 15-S-9 supplemented POME (sPOME) were fed to thermophilic anaerobic sequencing batch reactors (ASBRs) under hydraulic retention time (HRT) of 32-12.5 days. Optimally at HRT 19 days, H2 content in the biogas from sPOME-fed ASBR was noticeably higher, which gave a superior yield of 203.4 mLH2/gCODremoved (+15 %).


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Fermentação , Óleo de Palmeira , Poloxaleno , Tensoativos
8.
Bioprocess Biosyst Eng ; 45(7): 1125-1136, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35469027

RESUMO

Many operating parameters of ultrafiltration (UF) are playing a crucial role when using a polyethersulfone membrane to separate xylose reductase (XR) enzyme from reaction mixtures during xylitol synthesis. The present study focuses on the separation of XR enzyme using a cross-flow ultrafiltration (UF) membrane. The filtration process was analyzed using the three effective variables such as filtration time, cross-flow velocity (CFV), and the transmembrane pressure (TMP), which were ranging from 0 to 100 min, 0.52 to 1.2 cm/s and 1-1.6 bar, respectively. Then, using the resistance in series model, the hydraulic resistance for alkali chemical cleaning during XR separation was estimated. During separation, increased TMP showed a positive-flux effect as a driving force, however, fouling and polarized layer were more prominent under higher TMP. Increased CFV, on the other hand, was found more efficient in fouling control. In terms of the membrane cleaning techniques, an alkaline solution containing 0.1 M sodium hydroxide was shown to be the most effective substance in removing foulants from the membrane surface in this investigation. Cleaning with an alkaline solution resulted in a maximum flux recovery of 93% for xylose reductase separation. This work may serve as a useful guide to better understand the optimization parameters during XR separation and alleviating UF membrane fouling induced during XR separation.


Assuntos
Ultrafiltração , Purificação da Água , Aldeído Redutase , Filtração , Membranas Artificiais , Ultrafiltração/métodos , Purificação da Água/métodos
9.
Environ Sci Pollut Res Int ; 29(5): 7559-7572, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480307

RESUMO

The dephenolization of palm oil mill effluent (POME) with oil palm fiber-immobilized Trametes hirsuta AK 04 was conducted in a temporary immersion bioreactor to reduce the inhibitory effects of phenolics in anaerobic digestion. Longer immersion times provided greater removal of phenolics due to a higher release of manganese peroxidase. The most effective dephenolization was observed at 6 h immersed and 2 h non-immersed time (immersion ratio 6/8) with maximum removal of 85% from 1277 mg L-1 of phenolics in 4 days. The immobilized fungus maintained its high activity during multiple repeated batch treatments. The pretreated POME of 2 h showed higher methane yields compared with the untreated POME substrate. The methane yields increased with increasing pretreatment time and dephenolization levels. The results suggested that an increased abundance of methanogens was associated with the detoxification of phenolics. The fungal biomass contained crude protein, amino acids, and essential phenolics, which can be used as animal feed supplements.


Assuntos
Biocombustíveis , Trametes , Animais , Reatores Biológicos , Imersão , Resíduos Industriais/análise , Óleo de Palmeira , Óleos de Plantas , Polyporaceae , Eliminação de Resíduos Líquidos
10.
Bioresour Technol ; 333: 125206, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33940505

RESUMO

Effective utilization of cellulose and hemicelluloses is essential to sustainable bioconversion of lignocellulose. A newly isolated xylose-utilizing strain, Klebsiella pneumoniae PM2, was introduced to convert the biomass "whole sugars" into high value 2,3-butanediol (2,3-BDO) in a biorefinery process. The fermentation conditions were optimized (30°C, pH 7, and 150 rpm agitation) using glucose for maximum 2,3-BDO production in batch systems. A sulfite pretreated oil palm empty fruit bunches (EFB) whole slurry (substrate hydrolysate 119.5 g/L total glucose mixed with pretreatment spent liquor 80 g/L xylose) was fed to strain PM2 for fermentation. The optimized biorefinery process resulted in 75.03 ± 3.17 g/L of 2,3-BDO with 0.78 ± 0.33 g/L/h productivity and 0.43 g/g yield (87% of theoretical value) via a modified staged separate hydrolysis and fermentation process. This result is equivalent to approximately 135 kg 2,3-BDO and 14.5 kg acetoin precursors from 1 ton of EFB biomass without any wastage of both C6 and C5 sugars.


Assuntos
Frutas , Klebsiella pneumoniae , Butileno Glicóis , Etanol , Fermentação , Óleo de Palmeira , Açúcares
11.
Bioresour Technol ; 326: 124766, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33529983

RESUMO

Pretreatment is the most crucial and energy-intensive unit process affecting the feasibility of biorefinery, especially when lignin valorization is of concern. This study investigated and quantified the potential benefits of an innovative staged organosolv (OS)-dilute acid (DA) pretreatment process for whole oil palm tree residues conversion. The staged OS-DA pretreatment resulted in approximately five times higher net energy (1.50 GJ/tonne) over the single-step OSDA process (0.30GJ/tonne) due to potential energy saving on solvent recovery and less water consumption. For sugar, OS-DA pretreated substrate achieved more than 90% of cellulose digestibility which was more than 40% higher than DA-OS substrate. For mono-lignin, significant reduction in crude lignin condensation (21.7%) was confirmed by two-dimensional NMR analysis. The overall mass balance showed that approximately 142.45 tonnes of bioethanol, or a net energy yield of 969.5 GJ, can be produced by OS-DA process from palm tree residues per hectare of oil palm farm.


Assuntos
Lignina , Árvores , Biomassa , Celulose , Hidrólise
12.
Artigo em Inglês | MEDLINE | ID: mdl-32406803

RESUMO

The ability of white-rot fungus, Trametes hirsuta AK04, to utilize phenolics as single and mixed substrates was determined in mineral medium and palm oil mill effluent (POME). The strain AK04 was able to rapidly metabolize all ten phenolics as single and mixed substrates at all test concentrations. With single substrates, between 78 and 98% removal was achieved within seven days. The biomass yield increased with increasing concentration from 100 to 500 mg L-1 but slightly decreased when the concentration was increased up to 1,000 mg L-1. When fitted to a Haldane model, the groups of benzoic and cinnamic acid derivatives gave significantly higher maximum specific growth rates than other phenolics. Phenol exhibited the lowest affinity and highest inhibitory effects on fungal metabolism. In mixed substrates, the total concentration ranges of phenolics mixtures between 1,000 and 6,000 mg L-1 did not affect the fungal growth rate and the strain AK04 showed a high degree of resistance to their toxic effects. The addition of glucose and yeast extract enhanced the degradation rates of individual phenolics in the substrate mixtures, demonstrating the advantage of this strain for treating complex media, such as industrial wastewater.


Assuntos
Resíduos Industriais/análise , Óleo de Palmeira , Fenóis/metabolismo , Trametes/crescimento & desenvolvimento , Águas Residuárias/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Biomassa , Cinética , Modelos Teóricos , Fenóis/análise , Tailândia , Trametes/metabolismo , Purificação da Água/métodos
13.
Environ Sci Pollut Res Int ; 27(13): 14589-14600, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32048192

RESUMO

Emphasis on water reuse in agricultural sector receives a renewed interest to close the loop in circular economy, especially in dry and water-stressed regions. In this work, wastewater from cooperative smoked sheet rubber factory and the effluent (digestate) from its treatment system (anaerobic digester) were used as medium to grow purple non-sulfur bacteria (PNSB), Rhodopseudomonas palustris strain PP803, with wood vinegar supplement at mid-log growth phase to stimulate the release of 5-aminolevulinic acid (ALA), a plant growth promotor. Wastewater-to-digestate ratios (D:W) represented by soluble chemical oxygen demand (SCOD) were found to influence both the growth of R. palustris and synthesis of ALA. The highest ALA release of 16.02 ± 0.75 µM and the biomass accumulation of 1302 ± 78 mg/L were obtained from the medium SCOD of 4953 mg/L. Although retarding biomass accumulation by 28-36%, wood vinegar (WV) addition was proven to improve ALA release by 40%. Result suggested that SCOD of 3438 mg/L (75:25 D:W) contained sufficient carbon source for PNSB growth and was chosen to subsequently run the photo-bioreactor (PBR) to sustain R. palustris PP803 cells production. In continuous PBR operation, PNSB proliferation suffered from the low organic concentration in PBR at low organic loading. An organic loading increase to 1.21 g COD/L day was found to attain highest biomass concentration and longest PNSB dominant period over microalgea. In this study, a real-time monitoring protocol of PNSB and microalgae was specifically developed based on image color analysis at acceptable accuracy (R2 = 0.94). In the final assay, verification of the PBR-grown inoculant was conducted and ALA release efficiency was discussed under various wood vinegar dosages and dosing frequencies. This work has advanced our understandings closer to practical field application.


Assuntos
Ácido Acético , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Biomassa , Metanol , Rodopseudomonas
14.
Bioresour Technol ; 302: 122785, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31981804

RESUMO

Pretreatment is required for the enhancement of the bioconversion of lignocellulosic biomass. This study aimed to develop an integrated process producing efficient biochemical conversion of rubber wood waste (RW) into co-biofuels, fermentable sugar and methane. The glucan conversion was enhanced to 93.8% with temperature (210 °C) and delignification by organosolv pretreatment (OS). Thereafter, anaerobic digestion of the residue left after enzymatic hydrolysis was conducted which further improved the methane yield (205.5 LCH4/kg VS) by 33% over hydrothermal pretreatment (154.3 LCH4/kg VS). Delignification during OS plays a key role in improving the degradability of RW resulting in efficient energy recovery (11.23 MJ/kg pretreated RW) which was clearly higher than an integrated process based on hydrothermal (HT) or HT plus process water. Scaled up to a biorefinery, the integrated process based on OS would economically produce fermentable sugar while other value-added chemicals might be produced from the process water.


Assuntos
Metano , Madeira , Biocombustíveis , Biomassa , Hidrólise , Lignina , Açúcares
15.
Bioresour Technol ; 298: 122551, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31841824

RESUMO

Palm biomass wastes are currently considered as promising solid biofuels. However, their high potassium content leads to formation of slag in combustion chambers and causes frequent power-plant shutdowns for maintenance. Therefore, this study aimed to develop a low-cost practical biological pretreatment for these wastes. Oleaginous fungi Aspergillus tubingensis TSIP9, which originates from palm wastes, was used to pretreat biomass wastes and simultaneously produce oils through non-sterile solid state fermentation (SoSF). The operating conditions were optimized through response surface methodology. The fungi could grow and produce oils with good biodiesel fuel properties. After SoSF, potassium content in biomass wastes was reduced by 90% and cellulose content increased to >57%, making it suitable as clean solid biofuel. Repeated-SoSF with 90% substrate replacement was highly effective in continuously pretreating biomass wastes and producing fungal oils. This study demonstrates the cost-effective and environmentally friendly process for production of clean renewable energy through zero-waste strategy.


Assuntos
Biocombustíveis , Óleos de Plantas , Biomassa , Fermentação , Fungos
16.
J Air Waste Manag Assoc ; 69(12): 1429-1437, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31343389

RESUMO

Biogas containing H2S has limited use in electricity and heat production as H2S can be corrosive to metal equipment. Bio-filtration has proved to be a suitable technology for biogas desulfurization because of economical and environmental benefits over physicochemical techniques. In the present study, a response surface methodology using 32 full factorial design was employed to determine the effects of two operating parameters, namely empty bed retention time (EBRT: 100-180 sec) and liquid recirculation velocity (LRV: 2.4-7.1 m3 m-2 h-1) on H2S removal efficiency (%) in single-stage and triple-stage bio-trickling filters (SBTF and TBTF) treating an H2S-rich biogas. Quadratic model was found to be the best predictive model for H2S removal efficiency. The results indicated that H2S removal efficiency was significantly influenced by the synergistic effect of linear terms of EBRT and LRV with a greater effect associated with EBRT. However, the quadratic term of LRV had an antagonistic effect. The quadratic term of EBRT and cross-product term between EBRT and LRV did not exhibit a significant effect on H2S removal efficiency. The predicted values from the established models showed a close agreement with the experimental data with the coefficient of determination (R2) of 0.99 for H2S removal efficiency in both SBTF and TBTF. Response analysis demonstrated that the performance of TBTF was superior compared to SBTF.Implications: Bio-trickling filter technology has gained a lot of attention for biogas desulfurization because it is economically and environmentally superior over chemical methods. Empty bed retention time (EBRT) and liquid recirculation velocity (LRV) are crucial variables influencing the performance of bio-trickling filters. In this work, the authors established a model that can properly predict H2S removal efficiency in a single/triple bio-trickling filter (SBTF and TBTF) treating H2S-rich biogas with regard to the individual and interaction effects between EBRT and LRV. Analysis with the help of response surface methodology indicated that TBTF was more efficient compared to SBTF for H2S removal.


Assuntos
Reatores Biológicos , Filtração/métodos , Sulfeto de Hidrogênio/química , Biocombustíveis , Fatores de Tempo
17.
Bioresour Technol ; 284: 128-138, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30927650

RESUMO

Anaerobic digestion (AD) of lignocellulosic biomass has received significant attention for bioenergy production in recent years. However, hydrolysis is a rate-limiting in AD of such feedstock. In this study, effects of hydrothermal pretreatment of Napier grass, a model lignocellulosic biomass, on methane yield were examined through series of batch and semi-continuous studies. In batch studies, the highest methane yield of 248.2 ±â€¯5.5 NmL CH4/g volatile solids (VS)added was obtained from the biomass pretreated at 175 °C, which was 35% higher than that from the unpretreated biomass. The biomass pretreated at 200 °C resulted in formation of 5-hydroxymethylfurfural and furfural, which significantly inhibited methanogenesis. In semi-continuous studies, digester fed with the biomass pretreated at 200 °C at organic loading rate (OLR) of 4 g VS/L.d resulted in digester failure. Thus, OLRsoluble/OLRtotal ratio <200 is proposed as an operating criterion for effective operation of digester fed with pretreated biomass slurry.


Assuntos
Biomassa , Lignina/metabolismo , Metano/metabolismo , Anaerobiose , Hidrólise , Temperatura
18.
J Environ Manage ; 235: 231-239, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30684808

RESUMO

Rubber wood waste (RW) requires due to its recalcitrance a pretreatment step before efficient biochemical conversion is possible. Non chemical steam explosion pretreatment was adopted to enhance enzymatic hydrolysis and anaerobic digestion with severity from 2.70 to 4.35. RW treated at severity 4.35 (214 °C for 10 min) gave the highest 83.9 L CH4/kgVS effectiveness in anaerobic digestibility together with 45.2% hydrolysability in terms of glucan conversion. The intense pretreatment decreased particle size and degraded most of the hemicellulose, resulting in increased specific surface and better access for enzymes to cellulose. Additionally, the energy yield of steam exploded RW was enhanced by combined enzymatic hydrolysis with anaerobic digestion, in comparison to enzymatic hydrolysis or anaerobic digestion alone. This allowed for an efficient steam explosion pretreatment with co-production of sugar and methane. This study provides a technical approach for efficient biofuel production from RW after steam explosion pretreatment. Valorization of lignin-rich residue generated from the integrated process may increase value of RW, but assessing this requires further study.


Assuntos
Vapor , Madeira , Explosões , Hidrólise , Lignina , Metano
19.
Saudi J Biol Sci ; 25(4): 642-650, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29740228

RESUMO

This study aimed to produce inexpensive 5-aminolevulinic acid (ALA) in a non-sterile latex rubber sheet wastewater (RSW) by Rhodopseudomonas palustris TN114 and PP803 for the possibility to use in agricultural purposes by investigating the optimum conditions, and applying of wood vinegar (WV) as an economical source of levulinic acid to enhance ALA content. The Box-Behnken Design experiment was conducted under microaerobic-light conditions for 96 h with TN114, PP803 and their mixed culture (1:1) by varying initial pH, inoculum size (% v/v) and initial chemical oxygen demand (COD, mg/L). Results showed that the optimal condition (pH, % inoculum size, COD) of each set to produce extracellular ALA was found at 7.50, 6.00, 2000 for TN114; 7.50, 7.00, 3000 for PP803; and 7.50, 6.00, 4000 for a mixed culture; and each set achieved COD reduction as high as 63%, 71% and 75%, respectively. Addition of the optimal concentration of WV at mid log phase at 0.63% for TN114, and 1.25% for PP803 and the mixed culture significantly increased the ALA content by 3.7-4.2 times (128, 90 and 131 µM, respectively) compared to their controls. ALA production cost could be reduced approximately 31 times with WV on the basis of the amount of levulinic acid used. Effluent containing ALA for using in agriculture could be achieved by treating the RSW with the selected ALA producer R. palustris strains under the optimized condition with a little WV additive.

20.
Waste Manag ; 68: 128-138, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28709740

RESUMO

Methane production potential of tropical fruit wastes, namely lady-finger banana peel, rambutan waste and longan waste were compared using BMP assay and stoichiometric modified Buswell and Mueller equation. Methane yields based on volatile solid (VS) were in the order of ground banana peel, chopped banana peel, chopped longan waste, and chopped rambutan waste (330.6, 268.3, 234.6 and 193.2 mLCH4/gVS) that corresponded to their calculated biodegradability. In continuous operations of banana peel digestion at feed concentrations based on total solid (TS) 1-2%, mesophilic single stage digester run at 20-day hydraulic retention time (20-day HRT) failed at 2%TS, but successfully recovered at 1.5%TS. Pre-hydrolysis thermophilic reactor (4-d HRT) was placed as pre-treatment to mesophilic reactor (20-d HRT). Higher biogas (with an evolution of H2) and energy yields were obtained and greater system stability was achieved over the single stage digestion, particularly at higher solid feedstock. The best performance of two stage digestion was 68.5% VS destruction and energy yield of 2510.9kJ/kgVS added at a feed concentration of 2%TS.


Assuntos
Reatores Biológicos , Musa , Anaerobiose , Frutas , Hidrólise , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...